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Characterization of SPINK1 in Prostate Cancer

Arul Chinnaiyan

The University of Michigan 
Ann Arbor, MI  48109

 In cancer, specific growth and invasion-promoting proteins are abnormally over-expressed compared to normal cells and these 
proteins are often the target of therapies designed to inactivate them. The computational methods developed by our lab was  
used to identify highly over-expressed genes specifically in cancer cells, a method that was instrumental in identifying the first  
gene fusion in the majority of prostate cancer, TMPRSS-ETS. Utilizing the same method, the gene SPINK1 was later identified  
as highly over-expressed in prostate cancer, specifically in prostate cancer patients that were negative for the TMPRSS-ETS  
gene fusions. An antibody that targets the SPINK1 protein was tested in pre-clinical models for its potential as effective therapy  
to treat TMPRSS-ETS-negative prostate cancer.       Here, an antibody against the SPINK1 protein was used to examine its  
effects on various prostate cancer cell lines. The anti-SPINK1 antibody was able to inhibit the growth of cells that over-expressed 
SPINK1 but had no effect on cells that harbored other aberrations. Importantly, the anti-SPINK1 antibody also significantly halted 
the tumor growth in mice that were implanted with SPINK1 over-expressing tumors. These results suggest that a sub-set of 
TMPRSS-ETS negative prostate cancer patients that over-express SPINK1 can potentially be successfully treated with  
anti-SPINK1 antibody. 

TMPRSS-ETS, SPINK1, prostate cancer 
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DOD W81XWH-08-1-0031 (Apr 15, 2008 – Apr. 14, 2011) 
PI: Arul Chinnaiyan 
Final Report 
 
INTRODUCTION: 
 
Our laboratory previously developed a bioinformatics approach termed Cancer Outlier Profile 
Analysis (COPA) to nominate candidate oncogenes from transcriptomic data based on high 
expression in a subset of cases (‘‘outlier expression’’) (1). Using the Oncomine compendium of 
tumor profiling studies (http://www.oncomine.org) (2), COPA correctly identified several known 
oncogenes as outliers, such as ERBB2 in breast cancer and PBX1 in leukemia. In addition, 
COPA also identified the ETS family members ERG and ETV1 as high-ranking outliers in 
multiple prostate cancer profiling studies, leading to the discovery of recurrent gene fusions 
involving androgen-regulated gene TMPRSS2 with ERG, ETV1, ETV4, or ETV5 in prostate 
cancer cases that over-expressed the respective ETS family member (1, 3, 4). About 40%–80% 
of prostate-specific antigen (PSA)-screened prostate cancers harbor ETS gene fusion, whereas 
the remaining cases are driven by other non-fusion molecular aberrations. Additionally, we have 
determined that ETS-positive and -negative cancers have distinct transcriptional signatures 
across profiling studies (5) suggesting that fusion-negative cancers activate unique set of 
oncogenes and downstream targets. We used the same outlier meta-analysis approach (meta-
COPA) to identify SPINK1 (serine peptidase inhibitor, Kazal type 1) as a high-ranking meta-
outlier in a subset of prostate cancer that was mutually exclusive with ERG and ETV1 outlier 
expression across multiple prostate cancer profiling studies. SPINK1 encodes a 56–amino acid 
extracellular secreted peptide and SPINK1 mRNA has been reported to be expressed in various 
human cancers. Thus, SPINK1 may be an attractive therapeutic target. Under this study, we 
have validated the mutual exclusivity of SPINK1 expression and ETS fusion status, and 
demonstrated its role in cell proliferation, invasion and tumor growth (11). We also found 
that SPINK1 expression can be detected non-invasively in patient urine samples (6, 7) 
Finally, we demonstrated that SPINK1-mediated cell proliferation, invasion and tumor 
growth can be attenuated by a monoclonal antibody against SPINK1 (12). 
 
STATEMENT OF WORK  
A brief summary of the tasks completed is provided below. Complete details of all experiments 
can be found in the published manuscripts under “Reportable Outcomes” section. 
 
Task 1: Determine the role of SPINK1 in prostate cancer cell lines. Here we propose to over-
express SPINK1 in primary prostate epithelial cells and benign immortalized RWPE cells and 
monitor their phenotype. Similarly using prostate cancer cell lines (i.e., 22Rv1), we plan to 
knock-down SPINK1 in prostate cancer cell lines the express high levels of SPINK1 (and are 
TMPRSS2-ETS negative). Various phenotypic readouts will be assessed including cell 
proliferation, apoptosis, cell invasion/migration, and growth in soft agar.  
 
We first examined the role of SPINK1 in cell proliferation and invasion in prostate cancer cells.  
We treated benign immortalized RWPE prostate epithelial cells and DU145 and PC3 prostate  
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are needed to supplement or potentially replace serum PSA testing. We developed a multiplexed 
qPCR-based test for prostate cancer and assessed seven putative prostate cancer biomarkers, 
including SPINK1, in sedimented urine on a cohort of patients presenting for biopsy or radical 
prostatectomy (7). Biomarkers included those generally overexpressed in prostate cancer, such as 
PCA3, AMACR, and GOLPH2 as well as those overexpressed in subsets of prostate cancers, 
such as ERG and TMPRSS2:ERG, and TFF3 and SPINK1. All genes were first tested by 
univariate analysis, with GOLPH2 (P = 0.0002), SPINK1 (P = 0.0002), PCA3 (P = 0.001), and 
TMPRSS2:ERG fusion (P = 0.034) showing significant association for discriminating patients 
with prostate cancer from patients with negative needle biopsies ( Fig. 7).  
 
Urine-based diagnostic test can detect both TMPRSS:ERG gene fusion as well as other 
biomarkers of aggressive prostate cancer including SPINK1, in a non-invasive manner. We have 
also demonstrated that SPINK1 and ETS fusion are mutually exclusive in prostate cancer (11). 
Therefore we can utilize this assay to differentiate SPINK1 positive tumors from those harboring 
ETS fusions to treat subtype-specific prostate cancers with appropriate therapies. 
 

KEY RESEARCH ACCOMPLISHMENTS: Bulleted list of key research accomplishments 
emanating from this research. 

We have successfully accomplished all of the goals of the proposal and performed additional 
investigative studies to dissect out the functional role and mechanism of SPINK1 in the ETS 
fusion negative prostate cancer. We have demonstrated that: 

 SPINK1 overexpression promotes cell growth and invasion and knock-down of 
SPINK1 leads to a decrease in cell growth and invasion. 

 SPINK1 shares homology with EGF and SPINK1’s effects are mediated partially 
through interaction with EGFR.   

 Treatment with SPINK1 antibody alone or in combination with EGFR antibody 
reduces growth of SPINK1+ tumors but not SPINK negative tumors.  

 SPINK1 can be detected in the urine of prostate cancer patients and may be developed 
for diagnostic and/or prognostic marker for SPINK1+ prostate cancer.  

 

REPORTABLE OUTCOMES: Provide a list of reportable outcomes that have resulted from 
this research to include: manuscripts, abstracts, presentations; patents and licenses applied for 
and/or issued; degrees obtained that are supported by this award; development of cell lines, 
tissue or serum repositories; informatics such as databases and animal models, etc.; funding 
applied for based on work supported by this award; employment or research opportunities 
applied for and/or received based on experience/training supported by this award.  
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Editor's Summary

 
Targeting Outside the Box

 
 
 
form of prostate cancer.

druggable target for a potentially lethal−−by virtue of its outside-of-the-box location−−represents a new, specific, and
 tumors. Together, these findings suggest that SPINK1−than either antibody alone and did not affect SPINK1

 tumors more−receptor (EGFR). Indeed, antibodies to both SPINK1 and EGFR blocked the growth of SPINK1+/ETS
growth. Moreover, SPINK1 mediated its neoplastic effects in part through interactions with the epidermal growth factor
treatment with a SPINK1-directed monoclonal antibody resulted in decreased cell division, invasiveness, and tumor 
increased prostate cancer cell proliferation and invasiveness, whereas knockdown of SPINK1 gene expression or
showed directly that SPINK1 contributes to the aggressive phenotype. Forced expression of recombinant SPINK1 
~10% of prostate cancers, and expression has been correlated with aggressive disease. In the new work, the authors
extracellular therapeutic target for an aggressive subset of SPINK1+ prostate cancer. SPINK1 is highly expressed in 
therapeutic dilemma. Now, Ateeq et al. have identified SPINK1 (serine peptidase inhibitor, Kazal type 1) as an
unhelpful and cause troublesome side effects, it is clear that some out-of-the-box thinking is required to address this 

are aggressive and fast-growing, and traditional treatments are often−−prevalent forms of the disease in men
one of the most−−small-molecule inhibitors and antibodies. Because one-third of all cases of prostate cancer

out-of-the-cell, or extracellular, drug targets have many advantages over intracellular ones, such as easy access by 
Out-of-the-box thinking is highly valued in all creative endeavors, and science is no exception. Similarly,
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Therapeutic Targeting of SPINK1-Positive
Prostate Cancer
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Gene fusions involving ETS (erythroblastosis virus E26 transformation–specific) family transcription factors are
found in ~50% of prostate cancers and as such can be used as a basis for the molecular subclassification of
prostate cancer. Previously, we showed that marked overexpression of SPINK1 (serine peptidase inhibitor, Kazal
type 1), which encodes a secreted serine protease inhibitor, defines an aggressive molecular subtype of ETS
fusion–negative prostate cancers (SPINK1+/ETS−, ~10% of all prostate cancers). Here, we examined the potential
of SPINK1 as an extracellular therapeutic target in prostate cancer. Recombinant SPINK1 protein (rSPINK1) stim-
ulated cell proliferation in benign RWPE as well as cancerous prostate cells. Indeed, RWPE cells treated with
either rSPINK1 or conditioned medium from 22RV1 prostate cancer cells (SPINK1+/ETS−) significantly increased
cell invasion and intravasation when compared with untreated cells. In contrast, knockdown of SPINK1 in 22RV1
cells inhibited cell proliferation, cell invasion, and tumor growth in xenograft assays. 22RV1 cell proliferation,
invasion, and intravasation were attenuated by a monoclonal antibody (mAb) to SPINK1 as well. We also demon-
strated that SPINK1 partially mediated its neoplastic effects through interaction with the epidermal growth factor
receptor (EGFR). Administration of antibodies to SPINK1 or EGFR (cetuximab) in mice bearing 22RV1 xenografts
attenuated tumor growth by more than 60 and 40%, respectively, or ~75% when combined, without affecting
PC3 xenograft (SPINK1−/ETS−) growth. Thus, this study suggests that SPINK1 may be a therapeutic target in a
subset of patients with SPINK1+/ETS− prostate cancer. Our results provide a rationale for both the development
of humanized mAbs to SPINK1 and evaluation of EGFR inhibition in SPINK1+/ETS− prostate cancers.
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INTRODUCTION

Therapies targeted against specific molecular alterations present only
in cancer cells have revolutionized the treatment of several cancers.
For example, targeting ERBB2, which is amplified in ~20% of breast
cancers, with the humanized monoclonal antibody (mAb) trastuzumab
(Herceptin) has resulted in improved survival for breast cancer pa-
tients. Although organ-confined prostate cancer is highly curable,
more than 32,000 U.S. men are expected to die of metastatic prostate
cancer in 2010 (1). Multiple approved therapies (and newer agents in
late-stage development) target the androgen signaling axis in meta-
static disease; however, additional targeted therapies are lacking.

We previously used a bioinformatics approach, cancer outlier
profile analysis (COPA), to systematically prioritize genes with
marked overexpression in a subset of cancers (outlier expression). This
strategy identified outlier expression of the ETS (erythroblastosis virus
E26 transformation–specific) family members ERG and ETV1 in a
subset of prostate cancers across multiple gene expression profiling
studies. It also led to the discovery of recurrent gene fusions involving
the 5′ untranslated region of the androgen-regulated gene TMPRSS2
with ETS transcription factors (ERG, ETV1, ETV4, or ETV5) (2–5).
1Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA. 2Department of
Pathology, University of Michigan, Ann Arbor, MI 48109, USA. 3Howard Hughes Medical
Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA. 4Department
of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA. 5Comprehen-
sive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
6Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
7Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA.
*To whom correspondence should be addressed: E-mail: arul@umich.edu

www.S
Subsequent in vitro and in vivo studies have demonstrated a driving
role for ETS fusions in prostate oncogenesis and cancer progression
(6–9).

Subsequently, we used a “meta-outlier approach,” which used
COPA to prioritize genes that consistently showed high-ranking
outlier expression across multiple profiling studies. This approach
identified SPINK1 (serine peptidase inhibitor, Kazal type 1) as a
high-ranking meta-outlier in a subset of prostate cancer with mutually
exclusive outlier expression of ERG and ETV1 across multiple prostate
cancer profiling studies (10). SPINK1, also known as pancreatic secretory
trypsin inhibitor (PSTI) or tumor-associated trypsin inhibitor (TATI),
encodes a 56–amino acid peptide thought to protect the pancreas
from autodigestion by preventing premature activation of pancreatic
proteases (11). Apart from its normal expression in pancreatic acinar
cells, SPINK1 mRNA has been reported to be expressed in various
human cancers (12–18), and increased serum SPINK1 concentration
has been correlated with poor prognosis in some studies (12, 13, 17).
The prostate gland also secretes a variety of serine proteases, most
notably the kallikrein enzyme PSA (prostate-specific antigen), but also
trypsin (19). Thus, SPINK1 may have a role in modulating the activity
of cancer-related proteases in other tissues besides the pancreas.

We confirmed the mutually exclusive overexpression of SPINK1
and ETS gene fusions using a combined immunohistochemistry
(for SPINK1) and fluorescence in situ hybridization (FISH) (for ETS
fusions) approach across multiple independent cohorts, and demon-
strated that SPINK1 outlier expression is associated with an aggressive
subset of prostate cancers (10). We also demonstrated that SPINK1
outlier expression can be detected noninvasively in urine and con-
cienceTranslationalMedicine.org 2 March 2011 Vol 3 Issue 72 72ra17 1
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tributes to a multiplexed panel of biomarkers, which outperforms
serum PSA for prostate cancer diagnosis in patients presenting for
needle biopsy (10, 20). Our combined analyses of more than 1500
PC3 + rSPINK1 DU145+ rSPINK1
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prostate cancer cases demonstrated SPINK1
outlier expression in ~10% of all PSA-
screened prostate cancers, which were in-
variably negative for ETS gene fusions
(SPINK1+/ETS−) (10). Furthermore, SPINK1+

tumors show shorter PSA recurrence-free
survival in prostatectomy-treated patients
(10) and shorter progression-free survival
in endocrine-treated patients (21).

Unlike ETS gene fusions that lead to
the overexpression of a transcription fac-
tor (which are difficult to target therapeu-
tically), SPINK1 encodes an extracellular
secreted protein and thus is potentially more
amenable to therapeutic targeting. Here,
we qualify SPINK1 as a therapeutic target
in SPINK1+/ETS− prostate cancer and dem-
onstrate the therapeutic potential of a mAb
to SPINK1 in preclinical models. Addition-
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ally, we demonstrate that SPINK1 mediates its oncogenic effects in part
through epidermal growth factor receptor (EGFR) and that a mAb to
EGFR shows in vitro and in vivo activity in SPINK1+ prostate cancer.
0

0.2

Non-Targeting siRNA
siRNA SPINK1

rSPINK1
CM 22RV1

+

-

-

-

-

+

-

-

-

+

+

-

-

+

-

+

                
+
-

0

0.2

0.4

0.6

0.8

1

1.2

0

5

10

15

20

25

N
u

m
b

er
 o

f c
o

lo
n

ie
s

PINK1 
pool 

shSPINK1 
clone 11

shSPINK1 
pool 

DAPIDAPI
PINK1PINK1

DAPIDAPI
SPINK1SPINK1

1 
l 

shSPINK1 
clone11

shSPINK1 
pool 

shNS
vector 

shNS
vector 

P=0.002

shSPINK1 
pool 

shNS
vector 

2 3     4
Days

*

*

ol 
ne 11

 

P=0.00002

P=0.00002

E

G

A
b

so
rb

an
ce

 (5
60

 n
m

)

A
b

s

**

**

**

 o
n 

J
st

m
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

Fig. 1. SPINK1 has oncogenic effects in pros-
tate cells in vitro. (A) SPINK1 stimulated cell
proliferation in SPINK1−/ETS− cell lines. Benign
immortalized prostate cell line RWPE and
prostate cancer cell lines DU145 and PC3
(all SPINK1−/ETS−) were untreated or treated
with rSPINK1 (10 ng/ml). Cell proliferation
was measured by a WST-1 colorimetric assay
at the indicated time points. (B) SPINK1 me-
diates invasion of RWPE cells as measured
by Boyden chamber Matrigel invasion assay.
RWPEcellswere treatedwith rSPINK1 (10ng/ml)
or conditioned media (CM) from 22RV1 cells
(SPINK1+/ETS−). (C) As in (B), except using 22RV1
cells transfected with siRNA against SPINK1.
SPINK1-silenced22RV1cellswere further treated
with rSPINK1 (10ng/ml) or CM from22RV1 cells.
(D) SPINK1 expression in SPINK1 knockdown
22RV1 cells (stable pooled shSPINK1 or stable
shSPINK1 clone 11) compared tonontargeting
pooled stable control (shNS vector) cells by
qPCR (transcript) or immunofluorescence using
an antibody against SPINK1 (protein, upper
inset; 600× magnification). (E) Invasion assay
using shSPINK1 and shNS cells. Representative
photomicrographs (400×magnification) show-
ing cell motility assay (top inset) are shown.
shNS vector cells exhibit longer cell motility
tracks compared to shSPINK1 knockdown cells.
(F) Cell proliferation assay using pooled
shSPINK1, shSPINK1 clone 11, or shNS cells at
the indicated time points. (G) Soft agar colony
assay using pooled shSPINK1 and shNS cells.
All experimentswere independently performed
in triplicate. Data represent means ± SEM. P
values from significant two-sided Student’s
t tests are given (*P < 0.05; **P < 0.001).
RWPE
RWPE+ rSPINK1 PC3 DU145 m

)A
3.5 P=0.0006

3 P=0.00021.6
1.8 P=0.0002
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SPINK1 as an autocrine factor in prostate cancer
To further investigate the role of SPINK1 in prostate cancer, we deter-
mined the effects of exogenous SPINK1 on invasion and proliferation
using recombinant hexahistidine (6XHis)–tagged SPINK1 protein
(rSPINK1) (fig. S1A) or conditioned media (CM) collected from 22RV1
prostate cancer cells (SPINK1+/ETS−) (fig. S1B) (10). We treated be-
nign immortalized RWPE prostate epithelial cells and DU145 and PC3
prostate cancer cells (both of which are SPINK1−/ETS−) with rSPINK1
(10 ng/ml), which resulted in a significant increase in cell proliferation
(Fig. 1A).Wenext characterized the effect of rSPINK1or 22RV1CMon
cell invasion using a Boyden chamberMatrigel invasion assay. As shown
inFig. 1B, additionof rSPINK1or 22RV1CMtoRWPEcells significantly
increased invasion (P = 0.003 and 0.0009, respectively). Similar effects
were observedwhenMCF7breast cancer cellswere treatedwith rSPINK1
or 22RV1 CM (fig. S1C). Multiple recombinant 6XHis-tagged control
proteins or CM collected from RWPE or LNCaP prostate cancer cells
did not induce invasion in RWPE cells (figs. S1D and S2).

We previously showed that transient small interfering RNA
(siRNA)–mediated knockdown of SPINK1 in 22RV1 cells decreased
cell invasion (10). Here, we extended these results by demonstrating
that the addition of rSPINK1 or 22RV1 CM rescued the invasive phe-
notype of 22RV1 cells in which SPINK1 was knocked down (Fig. 1C;
P = 0.001 for both rSPINK1 and 22RV1 CM).
www.S
We next investigated whether the exogenous effect of SPINK1 on
cell proliferation and invasion was dependent on protease inhibitory
activity of trypsin [which has been shown to be simultaneously ex-
pressed with SPINK1 in different tumor types (17, 22)] or PSA. Initial
experiments demonstrated that PRSS1 (trypsinogen) mRNA expres-
sion in 22RV1 cells is relatively low compared with the CAPAN-1 pan-
creatic cancer cell line (fig. S3A), although a significant increase in
PRSS1 transcript was observed in siRNA-mediated SPINK1 knock-
down 22RV1 cells (fig. S3B). However, as shown in fig. S3C, stimu-
lation of 22RV1 cells with rSPINK1 or EGF did not affect trypsin
expression. siRNA-mediated knockdown of PRSS1 in 22RV1 cells
also had no effect on invasion (fig. S3, D and E). Similarly, stimula-
tion of 22RV1 cells with rSPINK1 or EGF did not significantly affect
PSA expression (fig. S4A). Finally, blocking PSA with a mAb did not
significantly inhibit 22RV1 cell invasion (fig. S4B). Together, these
findings demonstrate that extracellular SPINK1 induces prostate
cancer cell proliferation and invasion independent of protease inhib-
itory activity of trypsin or PSA. Although effects on other proteases
cannot be excluded, our results suggest that SPINK1 is an autocrine
pro-proliferative and proinvasive factor with effects independent of
trypsin and PSA activity.

The role of SPINK1 in cell proliferation and invasion
To further investigate the role of SPINK1 in cell proliferation and
invasion, we generated short hairpin RNA (shRNA) against SPINK1
cienceTranslationalMedicine.org
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and established stable 22RV1 cells where
SPINK1 was silenced (shSPINK1). Knock-
down of SPINK1 in both pooled and
clonal shSPINK1 cells compared to non-
targeting control cells (shNS cells) was
confirmed at the RNA level by quantita-
tive polymerase chain reaction (qPCR)
(more than 80% in both), as well as at
the protein level by immunofluorescence
staining with an antibody against SPINK1
(Fig. 1D). Next, we investigated the role
of SPINK1 in cell invasion and motility
using shSPINK1 cells. As anticipated,
shSPINK1 cells showed decreased cell
invasion by more than 75% in a Boyden
chamber Matrigel assay compared to non-
specific vector control (shNS) cells (Fig.
1E; P = 0.002). Reduction of cell motility
in a bead motility assay was also ob-
served in shSPINK1 cells compared to
shNS cells (Fig. 1E, top panel).

To investigate the role of SPINK1 in
cell proliferation, we carried out assays
using pooled shSPINK1, the clone with the
greatest SPINK1 knockdown (shSPINK1
clone 11), and shNS cells. Both pooled
(55% reduction) and clonal shSPINK1
cells (66% reduction) showed significant-
ly decreased proliferation compared to
shNS cells (Fig. 1F; P = 0.00002 in both
cases). Further, shSPINK1 cells showed
decreased soft agar colony formation when
compared to shNS cells (Fig. 1G).
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SPINK1 mAb or IgG mAb (1 mg/ml). (B) As in (A), except using 22RV1 cells and SPINK1 mAb or IgG mAb
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performed in triplicates. Data represent means ± SEM. P values from significant two-sided Student’s t tests
are given (*P < 0.05; **P < 0.001).
2 March 2011 Vol 3 Issue 72 72ra17 3



R E S EARCH ART I C L E

www.ScienceTranslationalMedicine.org

 o
n 

Ju
ly

 1
3,

 2
01

1
st

m
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

In vitro targeting of SPINK1
using a mAb
Because our results above demonstrate a
role for SPINK1 in invasion and prolifer-
ation, and SPINK1 is an extracellular se-
creted protein, we hypothesized that a
mAb against SPINK1 may be able to di-
rectly target SPINK1+/ETS− prostate can-
cer cells. Thus, we tested the effects of
an antibody to SPINK1 on 22RV1 cell
proliferation and invasion. The SPINK1
mAb (0.5 and 1 mg/ml) significantly in-
hibited 22RV1 cell proliferation by 40
and 50%, respectively, compared to a con-
trol monoclonal immunoglobulin G (IgG)
antibody (Fig. 2, A and B; P = 0.0001 and
P = 0.0007, respectively). However, the
antibody to SPINK1 had no effect on
DU145 and PC3 cell proliferation.

In addition to inhibiting proliferation,
the mAb to SPINK1 (0.5 and 1 mg/ml) sig-
nificantly attenuated cell invasion by 69
and 81%, respectively, compared to a con-
trol IgG mAb in 22RV1 cells (Fig. 2C; P =
0.002 and P = 0.007, respectively). Similar
to 22RV1, which is an androgen signaling–
independent derivative of primary CWR22
human prostate xenograft tumors, we also
investigated CWR22Pc cells, an androgen
signaling–dependent derivative of CWR22
(23), which also express high amounts of
SPINK1. As expected, CWR22Pc cell in-
vasion was blocked by 47 and 54% by the
mAb to SPINK1 at 0.5 and 1 mg/ml of
SPINK1 mAb concentration (Fig. 2C; P =
0.003 and P = 0.002, respectively). The
mAb to SPINK1 had no significant effect
on invasionof SPINK1−prostate cancer cell
lines including PC3, DU145, LNCaP, or
VCaP (Fig. 2C). Finally, the mAb to
SPINK1 attenuated 22RV1 cell motility
compared to IgG control, but had no ef-
fect on PC3 (SPINK1−/ETS−) cell motility
(fig. S5A).

Oncogenic effects of SPINK1
in part through interaction
with EGFR
SPINK1 has a similar structure as EGF,
with ~50% sequence homology and three
intrachain disulfide bridges (24, 25). To
characterize potential SPINK1 and EGFR
interaction, we overexpressed EGFR in
human embryonic kidney (HEK) 293 cells
and incubated the lysates with SPINK1-
GST (glutathione S-transferase), GST, or
GST-VEGF (vascular endothelial growth
factor) receptor 2 (GST-VEGFR) recom-
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immunoblotted with an antibody to EGFR (bottom panel). (B) Western blot showing EGFR phospho-
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siRNA-mediated EGFR knockdown 22RV1 cells treated with rSPINK1 (10 ng/ml). (D) Same as in (C), ex-
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2 March 2011 Vol 3 Issue 72 72ra17 4



R E S EARCH ART I C L E

 o
n 

Ju
ly

 1
3,

 2
01

1
st

m
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

binant proteins. We observed a strong interaction between SPINK1-
GST and EGFR but not with GST alone or GST-VEGFR recombi-
nant protein (Fig. 3A, top panel). Endogenous SPINK1 and EGFR
interaction was not detected by immunoprecipitation and immuno-
blotting in 22RV1 cells, because of the secretory nature of the SPINK1
protein. However, addition of GST-SPINK1 to 22RV1 cells followed
by immunoprecipitation and immunoblotting confirmed the inter-
action of SPINK1 and endogenous EGFR in 22RV1 cells (Fig. 3A,
bottom panel).

To further delineate the role of EGFR mediation of SPINK1 in
prostate cancer, we next assessed whether exogenous SPINK1 was
capable of inducing EGFR phosphorylation (similar to the cognate
ligand EGF). Stimulating 22RV1 cells with rSPINK1 resulted in
EGFR phosphorylation, although weaker than that observed with
EGF (Fig. 3B). rSPINK1 stimulation resulted in sustained EGFR phos-
phorylation over a 90-min time course, whereas EGF resulted in strong
EGFR phosphorylation, which diminished after only 10 min. Simi-
larly, stable shSPINK1 knockdown 22RV1 cells (pooled and clonal)
showed decreased phosphorylated EGFR (pEGFR), with slightly de-
creased total EGFR (possibly because of EGFR degradation) (fig.
S6A). Finally, we demonstrate that rSPINK1 is able to induce dimeriza-
tion of EGFR, although more weakly than EGF (fig. S6B).

We next examined the functional consequences of SPINK1-EGFR
interaction in the context of SPINK1+ prostate cancer using 22RV1 cells.
Transient knockdown of EGFR (fig. S5B) blocked 22RV1 cell invasion
by 75% (Fig. 3C; P = 0.004), which was partially rescued by addition
of exogenous SPINK1. A similar effect of EGFR knockdown was
observed in RWPE cells treated with rSPINK1 (Fig. 3D; P = 0.014
and P = 0.021, respectively). These results suggest that some but
not all of SPINK1’s effects are mediated by EGFR.

Because mAbs to EGFR are Food and Drug Administration (FDA)–
approved for certain cancers, we sought to determine whether EGFR
blockade could inhibit the oncogenic effects of SPINK1. We first
demonstrated that mAb to EGFR (cetuximab, C225) blocked the cell-
invasive effects of rSPINK1 in RWPE cells (Fig. 3E). C225 also
blocked cell invasion of SPINK1+ 22RV1 cells but not in SPINK1− cell
lines DU145, PC3, LNCaP, or VCaP (Fig. 3F). Combining mAbs to
SPINK1 and EGFR had an additive effect in the inhibition of 22RV1
cell invasion (Fig. 3G; P = 0.001). In contrast to mAb to SPINK1 (Fig.
2A), C225 had no effect on 22RV1 cell proliferation or PC3 and
DU145 cell proliferation (Fig. 3H). Together, these experiments sug-
gest that SPINK1 has both EGFR-dependent and EGFR-independent
functions in prostate cancer.

As a preliminary exploration of the downstream signaling path-
ways involved in the SPINK1-EGFR axis, we studied the mitogen-
activated protein kinase (MAPK) and protein kinase B/AKT pathways
in stable SPINK1 knockdown 22RV1 cells (shSPINK1 clone 11). We
observed decreased pMEK (phosphorylated mitogen-activated or ex-
tracellular signal–regulated protein kinase kinase), pERK (phosphoryl-
ated extracellular signal–regulated kinase), and pAKT (phosphorylated
AKT) in stable shSPINK1 cells compared to control shNS cells (fig. S5C).
Likewise, 22RV1 cells treated with SPINK1mAb antibody showed de-
creased pERK (fig. S5D). These observations provide the foundation
for further studies of the SPINK1-EGFR axis.

The role of SPINK1 in vivo and as a therapeutic target
Our in vitro studies demonstrated that SPINK1 mediates cell prolifer-
ation and invasion in SPINK1+ prostate cancer cells, and suggested that
www.S
a mAb can target extracellular SPINK1. To investigate the role of
SPINK1 in intravasation, a key step involved in the process of metas-
tasis, we used a chick chorioallantoic membrane (CAM) model sys-
tem (26) and demonstrate that rSPINK1 induced intravasation of
benign RWPE cells (Fig. 4A). Similarly, SPINK1 mAb and C225 sig-
nificantly inhibited 22RV1 cell intravasation (P = 0.01 and P = 0.03,
respectively), but did not significantly inhibit PC3 cell intravasation
(Fig. 4, B and C).

To qualify SPINK1 as a potential therapeutic target in vivo, we
implanted pooled shSPINK1-luciferase (luc) and shNS-luc 22RV1
cells in nude male mice. At both 4 and 5 weeks after implantation,
22RV1-shSPINK1-luc cells formed significantly smaller tumors (55%
reduction at week 4, P = 0.008, and 63% reduction at week 5, P =
0.013) compared to shNS-luc cells (Fig. 4, D and H).

To demonstrate preclinical efficacy of the mAb to SPINK1, we
treated nude mice implanted with 22RV1-luc cells with either the
mAb to SPINK1 or an isotype-matched monoclonal IgG (10 mg/kg)
twice a week. As shown in Fig. 4, E and I, administration of SPINK1
mAb monotherapy resulted in a 61% reduction of tumor burden at
week 4 (P = 0.015) and 58% reduction at week 5 (P = 0.015). A signif-
icant decrease in Ki-67–positive immunostained nuclei was observed
in the SPINK1 mAb–treated group compared to the control group
(fig. S7).

Because SPINK1 mediates its oncogenic effects in part through
EGFR, we similarly assessed the mAb to EGFR (C225) using the
same dosage schedule. C225 treatment resulted in a 41% reduction
at week 4 (P = 0.04) and 37% reduction at week 5 (P = 0.02) (Fig. 4,
E and I). By combining mAbs to SPINK1 and EGFR, we observed
an additive effect in vivo showing a 74 and 73% reduction in the growth
of 22RV1 xenografts at weeks 4 (P = 0.01) and 5 (P = 0.003), respec-
tively (Fig. 4, F and I).

To confirm our in vitro results, which suggested no effect of
SPINK1 or EGFR inhibition on SPINK1− prostate cancer, we per-
formed a similar xenograft study using PC3 cells. As expected, neither
SPINK1 mAb nor C225 significantly inhibited tumor growth in PC3
xenografted mice (Fig. 4, G and I). Finally, to investigate the potential
toxicity of SPINK1 mAb therapy, we investigated whether the mAb to
SPINK1 interacts with SPINK3, the murine homolog of SPINK1. The
mAb to SPINK1 used in our studies does not recognize murine
SPINK3, thus explaining the lack of observed toxicity in SPINK1
mAb–treated mice (fig. S8, A to C).
DISCUSSION

Previous studies demonstrated that SPINK1 outlier expression identified
a subset of ETS-negative prostate cancers (~10% of all PSA-screened
prostate cancers), although the mechanism for SPINK1 outlier expres-
sion remains unknown (10). SPINK1 defines a distinct molecular sub-
type of prostate cancer characterized by lack of ETS gene fusions as
well as a more aggressive phenotype as corroborated by independent
groups across distinct cohorts of prostate cancer patients (10, 21). Thus,
our working hypothesis is that SPINK1+ prostate cancer represents an
aggressive form of prostate cancer that may respond to different ther-
apies than ETS gene fusion–positive prostate cancers.

Here, we show that SPINK1 promotes prostate cancer proliferation
and invasion through autocrine and paracrine signaling. We also dem-
onstrate an in vivo role for SPINK1 in intravasation and tumor xeno-
cienceTranslationalMedicine.org 2 March 2011 Vol 3 Issue 72 72ra17 5
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graft growth. At present, the precise
mechanism and signaling pathways re-
sponsible for these effects in SPINK1+

prostate cancer are unclear. A recent
study showed that mutation of SPINK1
at leucine 18 (L18) in the trypsin inter-
action site reduced tumor growth, angi-
ogenesis, and lung metastases in HT-29
5M21 human colon carcinoma tumor
xenografts, suggesting that the cancer-
related phenotypes of SPINK1 may be
related to its anti-proteinase activity (27).
Moreover, the invasive behavior of these
HT-29 5M21 colon cancer cells was abol-
ished with an antibody to SPINK1 (27).
However, in our study, we did not observe
any effect of SPINK1 on trypsin or PSA,
two candidate proteases in prostate cancer.

Recent studies also indicate thatSPINK1
may be an apoptosis inhibitor prevent-
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Fig. 4. SPINK1 is a therapeutic target in
SPINK1+ prostate cancer. (A) Chick chorio-
allantoic membrane (CAM) assay quantify-
ing intravasated RWPE cells upon stimulation
with rSPINK1 (n = 6 in each group). (B) CAM
assay using 22RV1 cells in the presence of
IgG mAb, SPINK1 mAb, or C225 (n = 5 in
each group), with fold change of intravasated
cells compared to IgG mAb plotted. (C) As in
(B), except using PC3 cells. (D) Subcutaneous
xenograft growth of shNS-luciferase (luc) or
shSPINK1-luc 22RV1 cells implanted in male
BALB/c nu/nu mice (n = 10 in each group).
(E) As in (D), except using 22RV1-luc cell xeno-
grafts treated with control IgG mAb (n = 8),
SPINK1mAb (n=6), orC225 (n=8) (10mg/kg)
twice a week. (F) Same as in (E), exceptmice
(n = 7 per group) were treated with a com-
bination of SPINK1 and C225mAb (10mg/kg
for both). (G) As in (E) and (F), except using
PC3-luc xenografts treated with control IgG
mAb, SPINK1mAb, or C225 (n = 8 per group)
(10 mg/kg) alone or in combination twice a
week. (H) Representative bioluminescence
images from mice in (D) bearing pooled
shNS-luc or shSPINK1-luc xenografts and per-
cent reduction in tumor volume at week 5. (I)
Same as (H), except bioluminescence images
from mice bearing 22RV1-luc xenografts
(red, top panel) or PC3-luc (blue, lower panel)
mice treated with IgG mAb, SPINK1 mAb, or
C225 mAb alone or in combination, with
comparative percent reductionplot in tumor
volume at week 5. Data represent means ±
SEM. P values from significant two-sided
Student’s t tests are given (*P < 0.05; **P <
0.001).
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ing serine protease-dependent cell death (28). Here, we show that
SPINK1, which has structural similarities with EGF (29), binds to
EGFR, and inhibiting SPINK1 attenuates key downstream mediators
of the EGFR pathway including MEK, ERK, and AKT. Furthermore,
we also show that SPINK1 dimerizes EGFR and induces sustained
phosphorylation of EGFR, which have been shown to be critical for
downstream signaling activation after ligand binding (30). However,
in contrast to SPINK1 mAb, EGFR mAb only partially inhibited the
cell-invasive effects of 22RV1 cells and had no effect on cell proliferation,
suggesting that SPINK1 engages both EGFR-dependent and EGFR-
independent pathways tomediate its oncogenic effects. SPINK1 has also
been shown to engage the EGFR/MAPK cascade in NIH 3T3 fibroblasts
and pancreatic cancer cells (31).

This study provides compelling evidence that SPINK1 overexpres-
sion is oncogenic in prostate cancer and that inhibition of SPINK1 via
RNA interference or blocking antibodies may have therapeutic po-
tential. Our preclinical models suggest that this therapeutic effect
would only be effective in patients with SPINK1+ prostate cancer, sug-
gesting that such therapies would need to be evaluated in a molec-
ularly guided fashion. Because the area of antibody-based therapeutics
for extracellular targets is well developed, based on examples such as
trastuzumab in breast cancers with ERBB2 overexpression, we postu-
late that a SPINK1-blocking antibody may have similar efficacy on a
molecularly defined subset of prostate cancers. We have previously
demonstrated that patients with the subset of SPINK1+/ETS− prostate
cancers can be reliably identified by immunohistochemistry (10, 20),
as would be required for a molecularly defined clinical trial. Although
humanized SPINK1 mAbs are not yet available for clinical testing, our
studies show that SPINK1 partially mediates its oncogenic effects
through EGFR.

This finding prompted us to evaluate the utility of the FDA-approved
EGFR mAb cetuximab, which showed in vitro and in vivo activity only
against SPINK1+ prostate cancer cells (although less effective than
SPINK1 mAb). Phase I/II clinical trials of cetuximab (32) and EGFR
small molecules have been largely disappointing in metastatic prostate
cancer (33, 34); however, a small subset of patients have had responses,
including 3 of 36 (8%) patients who showed >50% PSA decline in a
Phase Ib/IIa clinical trial of cetuximab in combination with doxorubicin
in castrate-resistant metastatic prostate cancer patients (32). Results
from our study provide a plausible mechanism for why only the lim-
ited subset of patients with positive cancers (~10% of all cases) may
benefit from EGFR inhibition. This hypothesis can be assessed ret-
rospectively and in biomarker-informed clinical trials of patients
with SPINK1+ prostate cancer. Because the mAb to SPINK1 used
in our studies did not interact with murine SPINK3 (the homolog
of SPINK1), our study does not inform on the potential toxicity of
SPINK1 mAb therapy. However, an FDA-approved mAb to EGFR
has specific in vivo activity against SPINK1+ prostate cancer, provid-
ing an immediately translatable strategy for targeting SPINK1+ cancers
that can be clinically investigated while toxicity of humanized SPINK1
antibody therapy is explored.

In summary, our results support SPINK1 as an oncogene in a sub-
set of prostate cancers that can be molecularly identified, and provide
the rationale to develop humanized SPINK1 antibodies for human
clinical trials. Our work also reinforces the molecular subclassification
of prostate cancer in clinical trials (whether through SPINK/ETS status
or other relevant biomarkers), which has lagged behind other com-
mon epithelial cancers (that is, breast, lung, and colon).
www.S
MATERIALS AND METHODS

Cell lines and SPINK1 knockdown
The benign immortalized prostate cell line RWPE as well as pros-
tate cancer cell lines DU145, PC3, and 22RV1 were obtained from
the American Type Culture Collection (ATCC) and were grown ac-
cording to ATCC guidelines. For stable knockdown of SPINK1,
human lentiviral shRNAmir individual clone (ID V2LHS_153419)
targeting against SPINK1 or nonsilencing lentiviral shRNAmir in
GIPZ vectors was purchased from Open Biosystems (Thermo Scientific
Open Biosystems). Details are available in Supplementary Materials
and Methods.

Quantitative PCR
Total RNA was isolated with a miRNeasy mini kit following the
manufacturer’s instruction (Qiagen). Complementary DNA was
synthesized from 1 mg of total RNA with SuperScript III (Invitrogen)
in the presence of random primers. qPCR was performed with the
StepOne Real-Time PCR system (Applied Biosystems). Details and
primer information are available in Supplementary Materials and
Methods.

Cell proliferation assay
Proliferation for control and experimental cells was measured by a
colorimetric assay based on the cleavage of the tetrazolium salt WST-1
by mitochondrial dehydrogenases (cell proliferation reagent WST-1;
Roche Diagnostics) at the indicated time points in triplicate. Cell counts
for shNS vector and shSPINK1 cells were estimated by trypsinizing cells
and analysis by Coulter counter (Beckman Coulter) at different time
points in triplicates.

Basement membrane matrix invasion assay
For invasion assays, shNS vector– or shSPINK1-transduced cells, as
well as RWPE, PC3, and 22RV1 cells were used. Equal numbers of
the indicated cells were seeded onto the basement membrane matrix
(BD Biosciences) present in the insert of a 24-well culture plate. RPMI
media supplemented with 10% fetal bovine serum were added to the
lower chamber as a chemoattractant. After 48 hours, noninvading cells
and extracellular matrix were removed with a cotton swab. Invaded cells
were stained with crystal violet and photographed. The inserts were
treated with 10% acetic acid, and absorbance was measured at 560 nm.

CAM assay
The assay was performed essentially as described (26). Two million
RWPE cells were mixed with either 200 ng of multiple tag control
protein or 200 ng of rSPINK1 protein and applied to the CAM of
11-day-old chicken embryo. Similarly, 2 million 22RV1 or PC3
cells were mixed with either monoclonal IgG or antibodies to
SPINK1 or C225 (1 mg/ml) and applied onto the upper CAM of a
fertilized chicken embryo. Three days after implantation, the relative
number of cells that intravasate into the vasculature of the lower CAM
was analyzed by extracting genomic DNA with the Puregene DNA
purification system. Quantification of the human cells in the extracted
DNA was done as described (35).

22RV1 and PC3 xenograft models
Four-week-old male BALB/c nu/nu mice were purchased from Charles
River Inc. (Charles River Laboratory). Stable 22RV1 shNS-luc and 22RV1
cienceTranslationalMedicine.org 2 March 2011 Vol 3 Issue 72 72ra17 7
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shSPINK1-luc cells (5 × 105), or 22RV1-luc (2 × 105) or PC3-luc (5 ×
105) cells were resuspended in 100 ml of saline with 20% Matrigel (BD
Biosciences) and were implanted subcutaneously into the left flank re-
gions of the mice. Details are available in Supplementary Materials
and Methods.

Statistical analysis
All values presented in the study were expressed as means ± SEM. The
significant differences between the groups were analyzed by a Student’s
t test, and a P value of <0.05 or <0.001 was considered significant.
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SUPPLEMENTARY MATERIAL

www.sciencetranslationalmedicine.org/cgi/content/full/3/72/72ra17/DC1
Materials and Methods
Fig. S1. rSPINK1 or CM collected from 22RV1 cells induces invasion in benign or cancer cells.
Fig. S2. CM collected from 22RV1 cells induces cell invasion, but not CM, from LNCaP cells.
Fig. S3. PRSS1 (trypsin1) knockdown in 22RV1 cells has no effect on SPINK1-mediated cell invasion.
Fig. S4. Exogenous rSPINK1 has no effect on PSA in 22RV1 cells.
Fig. S5. SPINK1 mAb reduces SPINK1+ cell motility and SPINK1 knockdown alters MAPK pathway.
Fig. S6. Exogenous SPINK1 induces EGFR dimerization and phosphorylation.
Fig. S7. SPINK1 mAb induces decrease in tumor proliferation index.
Fig. S8. Anti-SPINK1 mAb, which does not recognize the murine homolog of SPINK1 (SPINK3),
has no observed toxic effect in treated mice.
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